Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 249
Filtrar
1.
Biol Res ; 57(1): 3, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217055

RESUMO

BACKGROUND: Sensorineural hearing loss (SNHL) poses a major threat to both physical and mental health; however, there is still a lack of effective drugs to treat the disease. Recently, novel biological therapies, such as mesenchymal stem cells (MSCs) and their products, namely, exosomes, are showing promising therapeutic potential due to their low immunogenicity, few ethical concerns, and easy accessibility. Nevertheless, the precise mechanisms underlying the therapeutic effects of MSC-derived exosomes remain unclear. RESULTS: Exosomes derived from MSCs reduced hearing and hair cell loss caused by neomycin-induced damage in models in vivo and in vitro. In addition, MSC-derived exosomes modulated autophagy in hair cells to exert a protective effect. Mechanistically, exogenously administered exosomes were internalized by hair cells and subsequently upregulated endocytic gene expression and endosome formation, ultimately leading to autophagy activation. This increased autophagic activity promoted cell survival, decreased the mitochondrial oxidative stress level and the apoptosis rate in hair cells, and ameliorated neomycin-induced ototoxicity. CONCLUSIONS: In summary, our findings reveal the otoprotective capacity of exogenous exosome-mediated autophagy activation in hair cells in an endocytosis-dependent manner, suggesting possibilities for deafness treatment.


Assuntos
Exossomos , Neomicina , Neomicina/toxicidade , Neomicina/metabolismo , Exossomos/metabolismo , Células Ciliadas Auditivas , Autofagia/fisiologia
2.
Front Immunol ; 14: 1264060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130726

RESUMO

Sialic acids are terminal sugars of the cellular glycocalyx and are highly abundant in the nervous tissue. Sialylation is sensed by the innate immune system and acts as an inhibitory immune checkpoint. Aminoglycoside antibiotics such as neomycin have been shown to activate tissue macrophages and induce ototoxicity. In this study, we investigated the systemic subcutaneous application of the human milk oligosaccharide 6'-sialyllactose (6SL) as a potential therapy for neomycin-induced ototoxicity in postnatal mice. Repeated systemic treatment of mice with 6SL ameliorated neomycin-induced hearing loss and attenuated neomycin-triggered macrophage activation in the cochlear spiral ganglion. In addition, 6SL reversed the neomycin-mediated increase in gene transcription of the pro-inflammatory cytokine interleukin-1ß (Il-1b) and the apoptotic/inflammatory kinase Pik3cd in the inner ear. Interestingly, neomycin application also increased the transcription of desialylating enzyme neuraminidase 3 (Neu3) in the inner ear. In vitro, we confirmed that treatment with 6SL had anti-inflammatory, anti-phagocytic, and neuroprotective effects on cultured lipopolysaccharide-challenged human THP1-macrophages. Thus, our data demonstrated that treatment with 6SL has anti-inflammatory and protective effects against neomycin-mediated macrophage activation and ototoxicity.


Assuntos
Neomicina , Ototoxicidade , Camundongos , Animais , Humanos , Neomicina/toxicidade , Antibacterianos/efeitos adversos , Aminoglicosídeos , Anti-Inflamatórios/farmacologia
3.
Neurosci Lett ; 817: 137518, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37844727

RESUMO

In mammals, aminoglycoside antibiotic-induced injury to hair cells (HCs) and associated spiral ganglion neurons (SGNs) is irreversible and eventually leads to permanent hearing loss. Efforts have been directed towards the advancement of efficacious therapeutic treatments to protect hearing loss, but the ideal substance for treating the damaged cochlear sensory epithelium has yet to be identified. Berberine (BBR), a quaternary ammonium hydroxide extracted from Coptis chinensis, has been found to display potential anti-oxidant and neuroprotective properties. However, its involvement in aminoglycoside antibiotic-induced ototoxicity has yet to be explored or assessed. In the present study, we explored the possible anti-oxidative properties of BBR in mitigating neomycin-triggered ototoxicity. An improved survival of HCs and SGN nerve fibers (NFs) in organ of Corti (OC) explants after neomycin with BBR co-treatment was observed, and BBR treatment attenuated reactive oxygen species (ROS) generation and reduced cleaved caspase-3 signaling by activating six phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling relative subtypes, and the addition of PI3K/AKT suppressor LY294002 resulted in a decrease in the protective effect. The protective effect of BBR against ototoxicity was also evident in a neomycin-injured animal model, as evidenced by the preservation of HC and SGN in mice administered subcutaneous BBR for 7 days. In summary, all results suggest that BBR has potential as a new and effective otoprotective agent, operating via the PI3K/AKT signaling pathway.


Assuntos
Berberina , Perda Auditiva , Ototoxicidade , Animais , Camundongos , Antibacterianos/toxicidade , Apoptose , Berberina/farmacologia , Berberina/uso terapêutico , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Neomicina/toxicidade , Ototoxicidade/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Neurobiol Dis ; 183: 106176, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37263384

RESUMO

Aminoglycoside antibiotics (AGAs) are widely used in life-threatening infections, but they accumulate in cochlear hair cells (HCs) and result in hearing loss. Increases in adenosine triphosphate (ATP) concentrations and P2X7 receptor expression were observed after neomycin treatment. Here, we demonstrated that P2X7 receptor, which is a non-selective cation channel that is activated by high ATP concentrations, may participate in the process through which AGAs enter hair cells. Using transgenic knockout mice, we found that P2X7 receptor deficiency protects HCs against neomycin-induced injury in vitro and in vivo. Subsequently, we used fluorescent gentamicin-Fluor 594 to study the uptake of AGAs and found fluorescence labeling in wild-type mice but not in P2rx7-/- mice in vitro. In addition, knocking-out P2rx7 did not significantly alter the HC count and auditory signal transduction, but it did inhibit mitochondria-dependent oxidative stress and apoptosis in the cochlea after neomycin exposure. We thus conclude that the P2X7 receptor may be linked to the entry of AGAs into HCs and is likely to be a therapeutic target for auditory HC protection.


Assuntos
Aminoglicosídeos , Ototoxicidade , Animais , Camundongos , Aminoglicosídeos/toxicidade , Aminoglicosídeos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Ototoxicidade/metabolismo , Antibacterianos/toxicidade , Neomicina/toxicidade , Neomicina/metabolismo , Células Ciliadas Auditivas/metabolismo , Cóclea , Trifosfato de Adenosina/metabolismo
5.
J Neurosci Methods ; 391: 109852, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37031766

RESUMO

BACKGROUND: Hearing impairment is a rising public health issue, and current therapeutics fail to restore normal auditory sensation. Animal models are essential to a better understanding of the pathophysiology of deafness and developing therapeutics to restore hearing. NEW METHODS: Wild-type CBA/CaJ neonatal mice P2-5 were used in this study. Neomycin suspension (500 nl of 50 or 100 mg/ml) was micro-injected into the endolymphatic space. Cochlear morphology was examined 3 and 7 days after injection; hair cell (HC) loss, supporting cell morphology, and neurite denervation pattern were assessed with whole-mounts. At 2 and 4 weeks post-injection, the spiral ganglion neuron (SGN) density was analyzed with cryostat sections. Audiometric responses were measured with auditory brain response (ABR) at 4 weeks. RESULTS: Rapid and complete degeneration of the inner and outer HCs occurred as early as 3 days post-injection. Subsequently, time- and dose-dependent degeneration patterns were observed along the axis of the cochlear membranous labyrinth forming a flat epithelium. Likewise, the SGN histology demonstrated significant cell density reduction at 2 and 4 weeks. The ABR threshold measurements confirmed profound deafness at 4 weeks. COMPARISON WITH EXISTING METHODS: Compared to previously described local and systemic aminoglycoside injections, this method provides a reliable, robust, and rapid deafening model with a single infusion of neomycin in neonatal mice. This model also allows for investigating the effects of inner ear damage during auditory maturation. CONCLUSIONS: A single injection of neomycin into the endolymphatic space induces robust HC loss and denervation in neonatal mice.


Assuntos
Surdez , Neomicina , Animais , Camundongos , Neomicina/toxicidade , Animais Recém-Nascidos , Surdez/induzido quimicamente , Camundongos Endogâmicos CBA , Cóclea , Gânglio Espiral da Cóclea/patologia , Potenciais Evocados Auditivos do Tronco Encefálico
6.
Autophagy ; 19(1): 75-91, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471096

RESUMO

Aminoglycosides exhibit ototoxicity by damaging mitochondria, which in turn generate reactive oxygen species that induce hair cell death and subsequent hearing loss. It is well known that damaged mitochondria are degraded by mitophagy, an important mitochondrial quality control system that maintains mitochondrial homeostasis and ensures cell survival. However, it is unclear whether dysregulation of mitophagy contributes to aminoglycoside-induced hair cell injury. In the current study, we found that PINK1-PRKN-mediated mitophagy was impaired in neomycin-treated hair cells. Our data suggested that mitochondrial recruitment of PRKN and phagophore recognition of damaged mitochondria during mitophagy were blocked following neomycin treatment. In addition, the degradation of damaged mitochondria by lysosomes was significantly decreased as indicated by the mitophagic flux reporter mt-mKeima. Moreover, we demonstrated that neomycin disrupted mitophagy through transcriptional inhibition of Pink1 expression, the key initiator of mitophagy. Moreover, we found that neomycin impaired mitophagy by inducing ATF3 expression. Importantly, treatment with a mitophagy activator could rescue neomycin-treated hair cells by increasing mitophagy, indicating that genetic modulation or drug intervention in mitophagy may have therapeutic potential for aminoglycoside-induced hearing loss.Abbreviations: AAV: adeno-associated virus; ABR: auditory brainstem response; ATF3: activating transcription factor 3; ATOH1/MATH1: atonal bHLH transcription factor 1; BafA1: bafilomycin A1; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; COX4I1/COXIV: cytochrome c oxidase subunit 4I1; CTBP2/RIBEYE: C-terminal binding protein 2; DFP: deferiprone; EGFP: enhanced green fluorescent protein; FOXO3: forkhead box O3; GRIA2/GLUR2: glutamate receptor, ionotropic, AMPA2 (alpha 2); HC: hair cell; HSPD1/HSP60: heat shock protein 1 (chaperonin); IHC: inner hair cell; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MYO7A: myosin VIIA; OPTN: optineurin; OMM: outer mitochondrial membrane; PRKN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced putative kinase 1; RT-qPCR: real-time quantitative polymerase chain reaction; TOMM20/TOM20: translocase of outer mitochondrial membrane 20; TUNEL: Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling; USP30: ubiquitin specific peptidase 30; XBP1: X-box binding protein 1.


Assuntos
Autofagia , Mitofagia , Mitofagia/genética , Aminoglicosídeos/toxicidade , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Antibacterianos/farmacologia , Neomicina/toxicidade , Células Ciliadas Auditivas
7.
Environ Toxicol ; 38(3): 604-614, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36367326

RESUMO

Ototoxicity refers to damage of sensory hair cells and functional hearing impairment following aminoglycosides exposure. Previously, we have determined that ferulic acid (FA) protected hair cells against serial concentrations of neomycin-induced ototoxic damage. The aim of the present study is to assess the mechanism and effects of FA on neomycin-induced hair cells loss and impact on mechanosensory-mediated behaviors alteration using transgenic zebrafish (pvalb3b: TagGFP). We first identified the optimal protective condition as pre/co-treatment method in early fish development. Pretreatment of the larvae with FA significantly protected against neomycin-induced hair cells loss through preventing neomycin passed through the cytoplasm of hair cells, and subsequently decreased reactive oxygen species production and TUNEL signals in 4 day post-fertilization (dpf) transgenic zebrafish larvae. Moreover, preservation of functional hair cells correlated directly with rescue of the altered swimming behavior, indicates FA pretreatment protects against neomycin ototoxic damage in 7-dpf transgenic zebrafish larvae. Together, our findings unravel the otoprotective role of FA as an effective agent against neomycin-induced ototoxic effects and offering the theoretical foundation for discovering novel candidates for hearing protection.


Assuntos
Neomicina , Ototoxicidade , Animais , Neomicina/toxicidade , Peixe-Zebra , Antibacterianos/toxicidade , Animais Geneticamente Modificados
8.
Elife ; 112022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047587

RESUMO

Sensory hair cells receive near constant stimulation by omnipresent auditory and vestibular stimuli. To detect and encode these stimuli, hair cells require steady ATP production, which can be accompanied by a buildup of mitochondrial byproducts called reactive oxygen species (ROS). ROS buildup is thought to sensitize hair cells to ototoxic insults, including the antibiotic neomycin. Work in neurons has shown that neurotransmission is a major driver of ATP production and ROS buildup. Therefore, we tested whether neurotransmission is a significant contributor to ROS buildup in hair cells. Using genetics and pharmacology, we disrupted two key aspects of neurotransmission in zebrafish hair cells: presynaptic calcium influx and the fusion of synaptic vesicles. We find that chronic block of neurotransmission enhances hair-cell survival when challenged with the ototoxin neomycin. This reduction in ototoxin susceptibility is accompanied by reduced mitochondrial activity, likely due to a reduced ATP demand. In addition, we show that mitochondrial oxidation and ROS buildup are reduced when neurotransmission is blocked. Mechanistically, we find that it is the synaptic vesicle cycle rather than presynaptic- or mitochondrial-calcium influx that contributes most significantly to this metabolic stress. Our results comprehensively indicate that, over time, neurotransmission causes ROS buildup that increases the susceptibility of hair cells to ototoxins.


Assuntos
Cálcio , Peixe-Zebra , Trifosfato de Adenosina , Animais , Cálcio/metabolismo , Neomicina/toxicidade , Espécies Reativas de Oxigênio , Transmissão Sináptica , Peixe-Zebra/fisiologia
9.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743144

RESUMO

Ototoxic hearing loss due to antibiotic medication including aminoglycosides and excess free radical production causes irreversible hair cell injury. Cichoric acid, a naturally occurring phenolic acid, has recently been found to exert anti-oxidative and anti-inflammatory properties through its free radical scavenging capacity. The present study aimed to investigate the protective effects of cichoric acid against neomycin-induced ototoxicity using transgenic zebrafish (pvalb3b: TagGFP). Our results indicated that cichoric acid in concentrations up to 5 µM did not affect zebrafish viability during the 2 h treatment period. Therefore, the otoprotective concentration of cichoric acid was identified as 5 µM under 2 h treatment by counting viable hair cells within the neuromasts of the anterior- and posterior-lateral lines in the study. Pretreatment of transgenic zebrafish with 5 µM of cichoric acid for 2 h significantly protected against neomycin-induced hair cell death. Protection mediated by cichoric acid was, however, lost over time. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and FM4-64 staining, respectively, provided in situ evidence that cichoric acid ameliorated apoptotic signals and mechanotransduction machinery impairment caused by neomycin. A fish locomotor test (distance move, velocity, and rotation frequency) assessing behavioral alteration after ototoxic damage revealed rescue due to cichoric acid pretreatment before neomycin exposure. These findings suggest that cichoric acid in 5 µM under 2 h treatment has antioxidant effects and can attenuate neomycin-induced hair cell death in neuromasts. Although cichoric acid offered otoprotection, there is only a small difference between pharmacological and toxic concentrations, and hence cichoric acid can be considered a rather prototypical compound for the development of safer otoprotective compounds.


Assuntos
Ototoxicidade , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Antibacterianos/toxicidade , Ácidos Cafeicos , Cabelo , Mecanotransdução Celular , Neomicina/toxicidade , Succinatos , Peixe-Zebra/fisiologia
10.
Neural Plast ; 2022: 1298692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601667

RESUMO

Ototoxic hearing loss results from hair cell death via reactive oxygen species (ROS) overproduction and consequent apoptosis. We investigated the effects of vitamin C (VC) on neomycin-induced HEI-OC1 cell damage, as well as the mechanism of inhibition. HEI-OC1 cells were treated with neomycin or with vitamin C (VC). The results indicated that VC had a protective effect on neomycin-induced HEI-OC1 cell death. Mechanistically, VC decreased neomycin-induced ROS generation, suppressed cell death, and increased cell viability. VC inhibited neomycin-induced apoptosis, ameliorated neomycin reduced antiapoptotic Bcl-2 expression, and suppressed neomycin increased expression of proapoptotic Bax, caspase-3 cleavage and caspase-8. TUNEL labeling demonstrated that VC blocked neomycin-induced apoptosis. Further study revealed that the effect of VC on neomycin-induced hair cell death was through interference with JNK activation and p38 phosphorylation. These results indicate that VC via suppressed ROS generation, which inhibited cell death by counteracting apoptotic signaling induced by neomycin in cells. Hence, VC is a potential candidate for protection agent against neomycin-induced HEI-OC1 cell ototoxicity.


Assuntos
Ácido Ascórbico , Neomicina , Apoptose , Ácido Ascórbico/farmacologia , Sobrevivência Celular , Células Ciliadas Auditivas/metabolismo , Neomicina/toxicidade , Espécies Reativas de Oxigênio/metabolismo
11.
Inflamm Res ; 71(3): 309-320, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35190853

RESUMO

OBJECTIVE: Hair cells in the inner ear have been demonstrated to be sensitive to the ototoxicity from some beneficial pharmaceutical drugs. This study aimed to explore the role of protein arginine methyltransferase 6 (PRMT6) in the process of neomycin-induced hearing loss and the underlying mechanism. METHODS: The neomycin-induced hearing loss mouse model and hair cell injury in vitro model were established. We took advantage of the HEI-OC1 cell line to evaluate PRMT6 expression in neomycin-induced hair cells, and the effect of PRMT6 on mitochondrial function and FoxG1 arginine methylation. Apoptotic cells were assessed and apoptotic marker cleaved caspase-3 level was detected. Reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) were subsequently measured. RESULT: The result showed that PRMT6 was significantly upregulated in neomycin-induced HEI-OC-1 cells, and PRMT6 silencing prevented MMP loss, reduced ROS production, as well as decreased cell apoptosis under neomycin treatment. Further results showed that FoxG1 was downregulated in neomycin-induced HEI-OC-1 cells, and PRMT6 promoted the FoxG1-mediated luciferase activity, while PRMT6 silencing reversed this effect. Mechanistic experiments revealed that PRMT6 silencing reduced the arginine methylation level of FoxG1 protein. In vivo, neomycin-induced upregulation of hearing thresholds and increased cell apoptosis, whereas PRMT6 inhibitor partly reversed these effects. CONCLUSION: Our findings suggested that inhibition of PRMT6 reduced neomycin-induced inner ear hair cell injury through the restraint of FoxG1 arginine methylation.


Assuntos
Arginina , Neomicina , Animais , Apoptose , Arginina/metabolismo , Arginina/farmacologia , Fatores de Transcrição Forkhead/genética , Cabelo/metabolismo , Células Ciliadas Auditivas/metabolismo , Metilação , Camundongos , Neomicina/metabolismo , Neomicina/toxicidade , Proteínas do Tecido Nervoso/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-33040680

RESUMO

Aminoglycoside antibiotics have been used for treating serious but also routine infections in veterinary and human medicine for many years. The basic aim of this work is to evaluate the cytotoxicity of dihydrostreptomycin and neomycin in vitro on three cell cultures - BHK-21 (Syrian golden hamster kidney fibroblast), VERO (African green monkey kidney fibroblast) and FEA (feline embryonic fibroblast) cells. The morphological changes were examined by Giemsa staining. Cells were dried and visualized under fluorescence microscope. After the exposure to different experimental doses of dihydrostreptomycin (812.5-20000 µg/mL) and neomycin (1000-20000 µg/mL) during 24 h, the viability of BHK-21, FEA and VERO cell lines were evaluated by MTT assay. Viability of BHK-21 cells significantly (P < 0.001) decreased after treatment with 3500; 5500 and 7500 µg/mL of dihydrostreptomycin and 9000; 10000 and 20000 µg/mL of neomycin. The FEA cell viability decreased significantly (P < 0.001; P < 0.01) at 2500 and 3000 µg/mL dihydrostreptomycin and at 3000 µg/mL of neomycin treatment. Only the highest concentration of dihydrostreptomycin (20000 µg/mL) reduced VERO cell viability significantly (P < 0.01). Based on or results we can assume the effect of different antibiotics in different concentrations on cell lines is various. Detection of antibiotic toxicity to animal cells is very important because of the increasing resistance of bacteria. One of the solutions is drug dose increasing, but only to a certain concentration, since the toxic effect over the therapeutic one will prevail, which we have also shown in this work.


Assuntos
Antibacterianos/toxicidade , Sulfato de Di-Hidroestreptomicina/toxicidade , Fibroblastos/efeitos dos fármacos , Neomicina/toxicidade , Animais , Antibacterianos/administração & dosagem , Gatos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cricetinae , Sulfato de Di-Hidroestreptomicina/administração & dosagem , Relação Dose-Resposta a Droga , Fibroblastos/patologia , Humanos , Neomicina/administração & dosagem , Células Vero
13.
J Cell Mol Med ; 25(2): 975-989, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33274582

RESUMO

Exposure to ototoxic drugs is a significant cause of hearing loss that affects about 30 thousand children with potentially serious physical, social and psychological dysfunctions every year. Cisplatin (CP) and aminoglycosides are effective antineoplastic or bactericidal drugs, and their application has a high probability of ototoxicity which results from the death of hair cells (HCs). Here, we describe the therapeutic effect of the flavonoid compound naringin (Nar) against ototoxic effects of cisplatin and aminoglycosides include gentamicin (GM) and neomycin (Neo) in zebrafish HCs. Animals incubated with Nar (100-400 µmol/L) were protected against the pernicious effects of CP (150-250 µmol/L), GM (50-150 µmol/L) and Neo (50-150 µmol/L). We also provide evidence for the potential mechanism of Nar against ototoxicity, including antioxidation, anti-apoptosis, promoting proliferation and hair cell regeneration. We found that mRNA levels of the apoptotic- and pyroptosis-related genes are regulated by Nar both in vivo and in vitro. Finally, by proving that Nar does not affect the anti-tumour efficacy of CP and antibacterial activity of aminoglycosides in vitro, we highlight its value in clinical application. In conclusion, these results unravel a novel therapeutic role for Nar as an otoprotective drug against the adverse effects of CP and aminoglycosides.


Assuntos
Aminoglicosídeos/efeitos adversos , Cisplatino/efeitos adversos , Flavanonas/farmacologia , Células Ciliadas Auditivas/patologia , Sistema da Linha Lateral/patologia , Transdução de Sinais , Animais , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/patologia , Gentamicinas/efeitos adversos , Células Ciliadas Auditivas/efeitos dos fármacos , Sistema da Linha Lateral/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neomicina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Piroptose/efeitos dos fármacos , Piroptose/genética , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Testes de Toxicidade Aguda , Peixe-Zebra
14.
Aging (Albany NY) ; 12(20): 19834-19851, 2020 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-33099273

RESUMO

Foxg1 plays important roles in regeneration of hair cell (HC) in the cochlea of neonatal mouse. Here, we used Sox9-CreER to knock down Foxg1 in supporting cells (SCs) in the utricle in order to investigate the role of Foxg1 in HC regeneration in the utricle. We found Sox9 an ideal marker of utricle SCs and bred Sox9CreER/+Foxg1loxp/loxp mice to conditionally knock down Foxg1 in utricular SCs. Conditional knockdown (cKD) of Foxg1 in SCs at postnatal day one (P01) led to increased number of HCs at P08. These regenerated HCs had normal characteristics, and could survive to at least P30. Lineage tracing showed that a significant portion of newly regenerated HCs originated from SCs in Foxg1 cKD mice compared to the mice subjected to the same treatment, which suggested SCs trans-differentiate into HCs in the Foxg1 cKD mouse utricle. After neomycin treatment in vitro, more HCs were observed in Foxg1 cKD mice utricle compared to the control group. Together, these results suggest that Foxg1 cKD in utricular SCs may promote HC regeneration by inducing trans-differentiation of SCs. This research therefore provides theoretical basis for the effects of Foxg1 in trans-differentiation of SCs and regeneration of HCs in the mouse utricle.


Assuntos
Transdiferenciação Celular , Fatores de Transcrição Forkhead/deficiência , Células Ciliadas Auditivas/metabolismo , Células Labirínticas de Suporte/metabolismo , Proteínas do Tecido Nervoso/deficiência , Fatores de Transcrição SOX9/metabolismo , Sáculo e Utrículo/metabolismo , Animais , Animais Recém-Nascidos , Linhagem da Célula , Proliferação de Células , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/patologia , Células Labirínticas de Suporte/efeitos dos fármacos , Células Labirínticas de Suporte/patologia , Masculino , Camundongos Knockout , Neomicina/toxicidade , Proteínas do Tecido Nervoso/genética , Ototoxicidade , Fenótipo , Fatores de Transcrição SOX9/genética , Sáculo e Utrículo/efeitos dos fármacos , Sáculo e Utrículo/patologia , Transdução de Sinais
15.
J Clin Invest ; 130(5): 2657-2672, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32027617

RESUMO

Hair cells, the mechanosensory receptors of the inner ear, are responsible for hearing and balance. Hair cell death and consequent hearing loss are common results of treatment with ototoxic drugs, including the widely used aminoglycoside antibiotics. Induction of heat shock proteins (HSPs) confers protection against aminoglycoside-induced hair cell death via paracrine signaling that requires extracellular heat shock 70-kDa protein (HSP70). We investigated the mechanisms underlying this non-cell-autonomous protective signaling in the inner ear. In response to heat stress, inner ear tissue releases exosomes that carry HSP70 in addition to canonical exosome markers and other proteins. Isolated exosomes from heat-shocked utricles were sufficient to improve survival of hair cells exposed to the aminoglycoside antibiotic neomycin, whereas inhibition or depletion of exosomes from the extracellular environment abolished the protective effect of heat shock. Hair cell-specific expression of the known HSP70 receptor TLR4 was required for the protective effect of exosomes, and exosomal HSP70 interacted with TLR4 on hair cells. Our results indicate that exosomes are a previously undescribed mechanism of intercellular communication in the inner ear that can mediate nonautonomous hair cell survival. Exosomes may hold potential as nanocarriers for delivery of therapeutics against hearing loss.


Assuntos
Exossomos/metabolismo , Células Ciliadas Auditivas/metabolismo , Animais , Antibacterianos/toxicidade , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/patologia , Resposta ao Choque Térmico/fisiologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Modelos Biológicos , Neomicina/toxicidade , Ototoxicidade/genética , Ototoxicidade/metabolismo , Ototoxicidade/patologia , Gravidez , Receptor 4 Toll-Like/metabolismo , Regulação para Cima
16.
Theranostics ; 10(1): 133-150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903111

RESUMO

Hair cells in the inner ear have been shown to be susceptible to ototoxicity from some beneficial pharmaceutical drugs, such as aminoglycosides and cisplatin. Thus, there is great interest in discovering new targets or compounds that protect hair cells from these ototoxic drugs. Epigenetic regulation is closely related to inner ear development; however, little is known about epigenetic regulation in the process of ototoxic drugs-induced hearing loss. Methods: In this study, we investigated the role of protein arginine methyltransferase 6 (PRMT6) in aminoglycoside- and cisplatin-induced hair cell loss by using EPZ020411, a selective small molecule PRMT6 inhibitor, in vitro in neonatal mouse cochlear explants and in vivo in C57BL/6 mice. We also took advantage of the HEI-OC1 cell line to evaluate the anti-apoptosis effects of PRMT6 knockdown on cisplatin-induced ototoxicity. Apoptotic cells were identified using cleaved caspase-3 staining and TUNEL assay. The levels of reactive oxygen species (ROS) were evaluated by DCFH-DA and cellROX green staining. The mitochondrial membrane potential (ΔΨm) were determined by JC-1, TMRM, and rhodamine 123 staining. Results: We found that EPZ020411 significantly alleviated neomycin- and cisplatin-induced cell apoptosis and increased hair cell survival. Moreover, pretreatment with EPZ020411 could attenuate neomycin- and cisplatin-induced hearing loss in vivo. Mechanistic studies revealed that inhibition of PRMT6 could reverse the increased expression of caspase-3 and cytochrome c translocation, mitochondrial dysfunction, increased accumulation of ROS, and activation of cell apoptosis after cisplatin injury. Conclusions: Our findings suggested that PRMT6 might serve as a new therapeutic target to prevent hearing loss caused by aminoglycoside- and cisplatin-induced ototoxicity by preventing ROS formation and modulating the mitochondria-related damage and apoptosis.


Assuntos
Cisplatino/toxicidade , Inibidores Enzimáticos/farmacologia , Células Ciliadas Auditivas/metabolismo , Perda Auditiva/metabolismo , Neomicina/toxicidade , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Animais , Antibacterianos/toxicidade , Apoptose , Linhagem Celular , Células Ciliadas Auditivas/patologia , Perda Auditiva/induzido quimicamente , Perda Auditiva/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteína-Arginina N-Metiltransferases/fisiologia , Espécies Reativas de Oxigênio/metabolismo
17.
Hear Res ; 377: 12-23, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30878773

RESUMO

Aminoglycoside antibiotics have potent antibacterial properties but cause hearing loss in up to 25% of patients. These drugs are commonly administered in patients with high glucocorticoid stress hormone levels and can be combined with exogenous glucocorticoid treatment. However, the interaction of stress and aminoglycoside-induced hearing loss has not been fully explored. In this study, we investigated the effect of the glucocorticoid stress hormone cortisol on hair cells in the zebrafish lateral line as an important step toward understanding how physiological stressors modulate hair cell survival. We found that 24-hr cortisol incubation sensitized hair cells to neomycin damage. Pharmacological and genetic manipulation demonstrates that sensitization depended on the action of the glucocorticoid receptor but not the mineralocorticoid receptor. Blocking endogenous cortisol production reduced hair cell susceptibility to neomycin, further evidence that glucocorticoids modulate aminoglycoside ototoxicity. Glucocorticoid transcriptional activity was apparent in lateral line hair cells, suggesting a direct action of cortisol in these aminoglycoside-sensitive cells. Our work shows that the stress hormone cortisol can increase hair cell sensitivity to aminoglycoside damage, which highlights the importance of recognizing stress and the impacts of glucocorticoid signaling in both ototoxicity research and clinical practice.


Assuntos
Antibacterianos/toxicidade , Gentamicinas/toxicidade , Glucocorticoides/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Hidrocortisona/toxicidade , Sistema da Linha Lateral/efeitos dos fármacos , Neomicina/toxicidade , Receptores de Glucocorticoides/agonistas , Proteínas de Peixe-Zebra/agonistas , Animais , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Sistema da Linha Lateral/embriologia , Sistema da Linha Lateral/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Neuroreport ; 29(12): 1011-1016, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29889716

RESUMO

Hair cells do not undergo spontaneous regeneration when they are damaged in the mammalian organ of Corti, leading to irreversible hearing loss. Previous studies have shown that 24-diamino-5-phenylthiazole (DAPT), an inhibitor of Notch signaling, plays a major role in inner ear development. However, whether DAPT influences antibiotic-induced hair cell damage remains uncertain. The present study aimed to investigate whether DAPT exerts protective or regenerative effects on neomycin-damaged hair cells. A histological analysis was carried out to assess the number and morphological changes of hair cells in cultured organ of Corti explants. Our results showed that in-vitro treatment with DAPT induced extra hair cells, whereas no newly generated supporting cells were found. We also found that DAPT was effective for preventing hair cell loss when cotreatment with neomycin was performed, suggesting that DAPT exerted protective effects on neomycin ototoxicity. In addition, DAPT treatment for 2-4 days following neomycin damage induced supernumerary hair cells. These findings indicate that inhibition of Notch signaling is a possible strategy for the treatment of hair cell loss caused by aminoglycoside antibiotics.


Assuntos
Antibacterianos/toxicidade , Diaminas/farmacologia , Células Ciliadas Auditivas/efeitos dos fármacos , Neomicina/toxicidade , Órgão Espiral/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Técnicas de Cultura de Órgãos , Órgão Espiral/patologia , Órgão Espiral/fisiologia , Receptores Notch/antagonistas & inibidores , Receptores Notch/fisiologia
20.
Histochem Cell Biol ; 150(3): 281-289, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29862415

RESUMO

Aminoglycoside ototoxicity results in permanent loss of the sensory hair cells in the mammalian cochlea. It usually begins at the basal turn causing high-frequency hearing loss. Here we describe previously unreported resistance of hair cells to neomycin ototoxicity in the extreme basal (hook) region of the developing cochlea of the C57BL/6 mouse. Organ of Corti explants from mice at postnatal day 3 were incubated (37 °C, 5% CO2) in normal culture medium for 19.5 h prior to and after exposure to neomycin (1 mM, 3 h). To study neomycin uptake in the hair cells, cochlear explants were incubated with Neomycin Texas-red (NTR) conjugate. As expected, exposure to neomycin significantly reduced the survival of inner (IHC) and outer hair cells (OHC). IHC survival rate was high in the apical segment and low in the basal segment. OHC were well preserved in the apical and hook regions, with substantial OHC loss in the basal segment. The NTR uptake study demonstrated that the high survival rate in the extreme basal turn OHC was associated with low NTR uptake. Treatment with a calcium chelator (BAPTA), which disrupts the opening of mechanoelectrical (MET) transduction channels, abolished or reduced NTR uptake in the hair cells throughout the cochlea. This confirmed the essential role of MET channels in neomycin uptake and implied that the transduction channels could be impaired in the hook region of the developing mouse cochlea, possibly as a result of the cadherin 23 mutation responsible for the progressive deafness in C57BL/6 mice.


Assuntos
Cóclea/efeitos dos fármacos , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Neomicina/toxicidade , Animais , Cóclea/patologia , Células Ciliadas Auditivas Externas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neomicina/química , Neomicina/farmacocinética , Técnicas de Cultura de Órgãos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...